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What is the current expansion rate of our 
Universe? 

Cyr-Racine (2021), adapted from 
Freedman et al. (2019)
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• Lots of ideas out here! 
Why are they all 
struggling to get a large 
value of the Hubble 
rate?

Why is it so hard to get a large Hubble 
constant from the CMB + BAO?
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Schöneberg et al., arXi:2107.10291



• CMB, BAO, and other 
cosmological 
observables have a 
fundamental symmetry 
that allows them to be 
compatible with a broad 
range of H0 values.

• But there is a price to 
pay… 

Main Message: CMB + BAO can be made 
compatible with a very large value of H0
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Cyr-Racine , Ge & Knox, arXi:2107.13000



Symmetry: Basic geometry and the 
dimensional analysis
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• Dimensionless observables 
seen in projection on the sky 
have an intrinsic scale 
invariance.

• By dimensional analysis, 
ODEs for the evolution of 
dimensionless quantities can 
only depend on 
dimensionless ratios.  
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k/H, ̇/H

Nothing special about cosmology here!

Photon-baryon scattering rate



11/3/21Francis-Yan Cyr-Racine - UNM 6

Invariance of angles under uniform rescaling of the 
Hubble rate

H ! fH

• All angles on the CMB sky are invariant 
under this scaling (for constant f ):
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But what if all length scales are 
uniformly rescaled? 
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• Instead of just rescaling H, do the transformation:

• By dimensional analysis, all factors of f cancel out in the 
equations of motion (EOM). 

2

spectral measurements opens up an approximate1 de-
generacy between T0 and H0. We wish to respect the
COBE/FIRAS constraint and so consider a series of al-
ternative transformations that all preserve the photon
energy density today. The CMB anisotropy and polar-
ization observables are all approximately invariant under
these transformations, with varying degrees of departure
from exact invariance.

The alternative transformation that comes closest
to CMB-observable invariance preserves the baryon-to-
photon ratio and the fraction of radiation that is free
streaming. We preserve the latter with the introduc-
tion of a dark relativistic fluid. We then investigate the
sensitivity of the CMB anisotropy and polarization ob-
servables to this particular alternative transformation.
It arises from changes to the baryon fraction (ratio of
baryon density to total matter density), and the di↵er-
ences between the photon-baryon fluid and the dark rel-
ativistic fluid.

Next we relax our artificial constraint on the ioniza-
tion fraction as a function of redshift, xe(z), restoring
its dependence on atomic reaction rates and cosmolog-
ical parameters. We find that whether we fix xe(z) or
self-consistently calculate it, makes very little di↵erence
to cosmological observables and posterior distributions of
cosmological parameters as determined by current obser-
vations.

In contrast, determining the Helium fraction by BBN
consistency, or placing a prior on it arising from abun-
dance inferences based on observations of extragalactic
HII regions, has a significant impact on CMB observ-
ables. With these restrictions on Helium in place, the
e↵ective Thomson cross section can no longer follow the
prescribed transformation. We find that the Thomson
cross section is an important length scale, significantly
impacting determination of H0. Our analyses provide
insight into the roles played by many physical processes
in the determination of H0 from CMB and BAO obser-
vations. These processes include Thomson scattering,
Helium production in BBN, neutrino free streaming, re-
combination, radiation driving, and the early ISW e↵ect.
Although the specific scenarios we study are all ones with
additional light relics, we attempt to derive conclusions
that apply more broadly.

II. EXACT SYMMETRY OF COSMOLOGICAL
PERTURBATIONS

In this section, we show that the CMB anisotropy spec-
tra and the matter power spectrum possess an exact sym-

1 or an exact one in the context of our (artificial) transformation

metry under the scaling transformation

⇢i ! f
2
⇢i,

̇! f ̇ and

As ! As/f
(ns�1) (1)

where i enumerates all the components with densities
⇢i, ̇ = ane�T is the Thomson opacity, and As and ns

are the amplitude and spectral index of the primordial
matter power spectrum.
To show the existence of this symmetry, we start by

computing how the solution to the Boltzmann equations
describing dark matter, baryons, photons, and neutrinos
transform under this scaling. We then discuss the behav-
ior of the gravitational potentials under this transforma-
tion. We finally show how the CMB C` and the matter
power spectrum can be left exactly invariant under this
scaling of the Hubble rate once the primordial spectrum
of fluctuations is properly adjusted. Our discussion here
follows that presented in Ref. [3], but is extended here
beyond the tight-coupling approximation.
As a starting point, let us first examine the Boltzmann

equations governing the evolution of photons and baryons
fluctuations. Using the scale factor a as our time variable,
these take the form [6]
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= �aHvb + c
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sk�b +
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⇢b
̇(F�1 �

4

3
vb),

where F�l are the multipole moments of the photon
temperature perturbation, k is the Fourier wavenumber,
̇ = ane�T is the Thomson opacity, �b is the baryon den-
sity perturbation, vb is the baryonic bulk velocity, cs is
the baryonic sound speed, and � and  are the two grav-
itational potentials in conformal Newtonian gauge. Note
that we have used the relationship

d

d⌘
= a

2
H

d

da
(3)

to convert between conformal time (⌘) derivatives and
scale-factor derivatives. It is straightforward to see that
these equations are invariant under the transformation

H ! fH, k ! fk, ̇! f ̇. (4)

These transformations correspond to equally rescaling all
length scales appearing in the Boltzmann equations: the

This leaves the photon-baryon (and dark matter 
and massless neutrinos) EOM invariant.



Special feature of our Universe: Initial 
conditions

11/3/21Francis-Yan Cyr-Racine - UNM 8

• We happen to live in a Universe in which the initial scalar 
fluctuations have no intrinsic scale.

• Since ns < 1, the different Fourier modes have slightly 
different primordial amplitudes. 

• Thus, the transformation                   will modify the 
amplitude of fluctuations (CMB, Pm(k), etc.)

• However, since power laws have no scale, this can be 
corrected with a trivial rescaling:

k ! fk

3

Hubble horizon, the wavelength of fluctuations, and the
photon mean free path. To close this system of equations,
we need the perturbed Einstein equations for the � and  
potentials. We use here the Poisson and shear equations

k
2
�+ 3aH

✓
a
2
H

d�

da
+ aH 

◆
= �4⇡Ga

2
X

i

⇢i�i, (5)

k
2(��  ) = 12⇡Ga

2
X

i

(⇢i + Pi)�i,

where �i and �i are the energy density perturbation and
anisotropic stress of species i, respectively. Once again,
these equations are invariant under the transformation
H ! fH (which implies ⇢i ! f

2
⇢i) and k ! fk. Mass-

less neutrinos and dark matter follow collisionless ver-
sions of those given in Eqs. (2), implying that they too
are invariant under the transformation H ! fH and
k ! fk. We note that the evolution of massive neutri-
nos perturbations are also invariant under this transfor-
mation, once their masses are also properly rescaled (see
Appendix TBD).

We thus see that the linear evolution equations of all
components present in the Universe are invariant under
the transformation given in Eq. (4). This means that we
can express the solution �̃ to the perturbation equations
in the presence of a rescaled Hubble rate H ! fH in
terms of the original solution � in the absence of scaling
(i.e. f = 1) as

�̃(k, ̇, a, f) = �(k/f, ̇/f, a, f = 1), (6)

where � here stands for any of the perturbation variables
(e.g. �, v, F�l, etc.). Such a relation was first presented in
Ref. [3] in the context of the tight-coupling approxima-
tion ( ̇� H), but we see here that it applies in a broader
context once the Thomson opacity is also rescaled.

Under this rescaling, the CMB temperature power
spectra then take the form

C
TT
` (f) =

Z
dk

k
P (k)|�̃T `(k, f)|2, (7)

where P (k) is the primordial spectrum of fluctuations,
and �T `(k, f) is the photon transfer function under the
rescaling f ! fH. The latter can be written as

�̃T `(k, f) =

Z 1

0
da S̃T (k, ̇, a, f)j`(k�̃(a, f)), (8)

where S̃T (k, ̇, a, f) is the photon source term, and
�̃(a, f) is the conformal distance to scale factor a in
the presence of the rescaled Hubble rate. The source
term S̃T depends on cosmological perturbations obeying
Eq. (6) and on the photon visibility function g̃(a, f) =
�d/da(e�̃(a,f)), where

̃(a, f) =

Z 1

a
da

0 ne�T

fa0H
=
(a, f = 1)

f
. (9)

This implies that

S̃T (k, ̇, a, f) = ST (k/f, ̇/f, a, f = 1). (10)

Similarly, we have �̃(a, f) = �(a, f = 1)/f . We thus get

�̃T `(k, f) =

Z 1

0
daST (k/f, ̇/f, a, f = 1)

⇥ j`((k/f)�(a, f = 1))

= �T `(k/f, f = 1), (11)

and the CMB temperature spectrum takes the form

C
TT
` (f) =

Z
dk

k
P (k)|�T `(k/f, f = 1)|2

=

Z
dk

0

k0
P (fk0)|�T `(k

0
, f = 1)|2. (12)

Adopting the standard power-law primordial power spec-
trum P (k) = As(k/kp)ns�1, where kp is the pivot scale,
and rescaling the scalar amplitude As ! As/f

ns�1 we
can write this as

C
TT
` (f) =

Z
dk

0

k0
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0
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= C
TT
` (f = 1), (13)

hence showing that the CMB temperature spectrum is
indeed exactly invariant under the transformation

�
H ! fH, ̇! f ̇, As ! As/f

ns�1
 
. (14)

An entirely similar argument applies to the polarization
and cross spectra, implying that the primary CMB is
entirely unchanged under this transformation. Further-
more, matter clustering observables (e.g. �8) are also in-
variant under this transformation, hence also leaving the
lensing of the CMB unchanged. We thus conclude that
the observable CMB is completely invariant under the
above transformation.
In the top row of Figure 1, the CMB power spectra are

the same under the exact scaling symmetry. In this case,
the physical energy density of di↵erent species are scaled
up by f

2. Since ne / Xe⌦bh
2(1 � Yp), the scaling sym-

metry brings in a factor of f2 in ne. To keep the ne�Ta

scaled by f , we can either scale Thomson scattering cross
section, �T ! �T /f , or vary the Helium mass fraction,
YP, to keep the “e↵ective Thomson cross section”. The
result is the same as we expected for the scaling symme-
try. In the plot, we show the scaling factor up to f = 1.3,
which corresponds to H0 = 87.57 km/s/Mpc.

III. SOURCES OF SYMMETRY BREAKING

Of course, not all observables are invariant under this
transformation. Further, there are physical processes

Zahn and Zaldarriaga (2003)

3

Hubble horizon, the wavelength of fluctuations, and the
photon mean free path. To close this system of equations,
we need the perturbed Einstein equations for the � and  
potentials. We use here the Poisson and shear equations

k
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where �i and �i are the energy density perturbation and
anisotropic stress of species i, respectively. Once again,
these equations are invariant under the transformation
H ! fH (which implies ⇢i ! f

2
⇢i) and k ! fk. Mass-

less neutrinos and dark matter follow collisionless ver-
sions of those given in Eqs. (2), implying that they too
are invariant under the transformation H ! fH and
k ! fk. We note that the evolution of massive neutri-
nos perturbations are also invariant under this transfor-
mation, once their masses are also properly rescaled (see
Appendix TBD).

We thus see that the linear evolution equations of all
components present in the Universe are invariant under
the transformation given in Eq. (4). This means that we
can express the solution �̃ to the perturbation equations
in the presence of a rescaled Hubble rate H ! fH in
terms of the original solution � in the absence of scaling
(i.e. f = 1) as

�̃(k, ̇, a, f) = �(k/f, ̇/f, a, f = 1), (6)

where � here stands for any of the perturbation variables
(e.g. �, v, F�l, etc.). Such a relation was first presented in
Ref. [3] in the context of the tight-coupling approxima-
tion ( ̇� H), but we see here that it applies in a broader
context once the Thomson opacity is also rescaled.

Under this rescaling, the CMB temperature power
spectra then take the form

C
TT
` (f) =

Z
dk
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P (k)|�̃T `(k, f)|2, (7)

where P (k) is the primordial spectrum of fluctuations,
and �T `(k, f) is the photon transfer function under the
rescaling f ! fH. The latter can be written as
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Z 1

0
da S̃T (k, ̇, a, f)j`(k�̃(a, f)), (8)

where S̃T (k, ̇, a, f) is the photon source term, and
�̃(a, f) is the conformal distance to scale factor a in
the presence of the rescaled Hubble rate. The source
term S̃T depends on cosmological perturbations obeying
Eq. (6) and on the photon visibility function g̃(a, f) =
�d/da(e�̃(a,f)), where

̃(a, f) =

Z 1

a
da

0 ne�T

fa0H
=
(a, f = 1)

f
. (9)

This implies that

S̃T (k, ̇, a, f) = ST (k/f, ̇/f, a, f = 1). (10)

Similarly, we have �̃(a, f) = �(a, f = 1)/f . We thus get

�̃T `(k, f) =

Z 1

0
daST (k/f, ̇/f, a, f = 1)

⇥ j`((k/f)�(a, f = 1))

= �T `(k/f, f = 1), (11)

and the CMB temperature spectrum takes the form

C
TT
` (f) =

Z
dk

k
P (k)|�T `(k/f, f = 1)|2

=

Z
dk

0

k0
P (fk0)|�T `(k

0
, f = 1)|2. (12)

Adopting the standard power-law primordial power spec-
trum P (k) = As(k/kp)ns�1, where kp is the pivot scale,
and rescaling the scalar amplitude As ! As/f

ns�1 we
can write this as

C
TT
` (f) =

Z
dk

0

k0
As

fns�1

✓
fk

0

kp

◆ns�1

|�T `(k
0
, f = 1)|2

=

Z
dk

0

k0
As

✓
k
0

kp

◆ns�1

|�T `(k
0
, f = 1)|2

= C
TT
` (f = 1), (13)

hence showing that the CMB temperature spectrum is
indeed exactly invariant under the transformation

�
H ! fH, ̇! f ̇, As ! As/f

ns�1
 
. (14)

An entirely similar argument applies to the polarization
and cross spectra, implying that the primary CMB is
entirely unchanged under this transformation. Further-
more, matter clustering observables (e.g. �8) are also in-
variant under this transformation, hence also leaving the
lensing of the CMB unchanged. We thus conclude that
the observable CMB is completely invariant under the
above transformation.
In the top row of Figure 1, the CMB power spectra are

the same under the exact scaling symmetry. In this case,
the physical energy density of di↵erent species are scaled
up by f

2. Since ne / Xe⌦bh
2(1 � Yp), the scaling sym-

metry brings in a factor of f2 in ne. To keep the ne�Ta

scaled by f , we can either scale Thomson scattering cross
section, �T ! �T /f , or vary the Helium mass fraction,
YP, to keep the “e↵ective Thomson cross section”. The
result is the same as we expected for the scaling symme-
try. In the plot, we show the scaling factor up to f = 1.3,
which corresponds to H0 = 87.57 km/s/Mpc.

III. SOURCES OF SYMMETRY BREAKING

Of course, not all observables are invariant under this
transformation. Further, there are physical processes
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1. Increase Hubble rate at all times by scaling up every 
energy density:

2. Scale up the photon scattering rate                     according 
to:

3. Adjust the initial amplitude of scalar fluctuations 
according to
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̇ = ane�T

G⇢i ! f2G⇢i H ! fH

2

important questions raised by our proposed scenario, and
their possible resolutions, before concluding.

The Scaling Transformation.— If we assume, for now,
that recombination happens in equilibrium and neutri-
nos are massless then the only length scales in the linear
perturbation evolution equations in the ⇤CDM model,
written with the scale factor a = 1/(1 + z) as the in-
dependent time-like variable, are the gravitational time
scales of each of the i = 1 to N components, 1/

p
G⇢i(a),

and the photon mean free path between electron scatters,
1/(�Tne(a)). As a result, if we consider the linear evo-
lution of a single Fourier mode with wavenumber k, any
fractional perturbation, such as �⇢m(k, a)/⇢m(a) satisfy-
ing the evolution equations will also satisfy them when
transformed by a uniform scaling of all relevant (inverse)
length scales (including k) by a factor we will call f .
Since the initial conditions in ⇤CDM do not introduce
a length scale (the spectrum of initial perturbations is a
power law with an amplitude to be determined from ob-
servations), the statistical properties of fractional pertur-
bations viewed in projection are independent of f except
for an overall amplitude. Dependence on the amplitude
can be removed [40] by extending the scaling transforma-
tion to include As ! As/f

(ns�1) where As is the ampli-
tude of the primordial power spectrum at some fiducial
value of k, and ns is the spectral index of the power law
power spectrum of initial density perturbations.

In Ref. [40] this transformation was introduced but
without the photon scattering-rate scaling. Including it,
the transformation leads to an exact symmetry, in the
limit of equilibrium recombination [73], massless neutri-
nos [74], and linearized equations [75], of the statisti-
cal properties of maps made in projection on the sky
of quantities such as �⇢/⇢, and fractional CMB tem-
perature and polarization anisotropies. These include
galaxy clustering power spectra, shear power spectra,
galaxy-shear cross correlations, fractional CMB temper-
ature power spectra, polarization power spectra, and the
temperature-polarization cross spectrum. The invariance
exists for the ⇤CDM model, and any other model as long
as additional length scales (if any, such as related to mean
curvature or neutrino mass) are properly scaled as well.
Absent the introduction of new length scales, the full
transformation can be written as

p
G⇢i(a) ! f

p
G⇢i(a), �Tne(a) ! f�Tne(a)

and As ! As/f
(ns�1)

.

(1)

Symmetry Breaking.—In the real universe, the trans-
formation given in Eq. (1) immediately runs into severe
problems with observations that are sensitive to absolute
densities of cosmological components. Most importantly,
we know very precisely the mean energy density of the
CMB today from measurements of its flux density across
a broad range of wavelengths. It is famously nature’s
best approximation to black body radiation, with a mea-
sured temperature from FIRAS of T0 = 2.7255 ± 0.0013

K [76, 77]. By anchoring ⇢� , this measurement severely
limits our ability to exploit the scaling transformation to
raise H0. A similar point was made recently in Ref. [78].
Other important e↵ects that break the above symme-

try arise from departures from thermodynamic equilib-
rium, as emphasized in Ref. [40]. Unlike periods of equi-
librium, during which we have no sensitivity to the rates
of the reactions that are maintaining equilibrium, peri-
ods in which equilibrium is lost provide us with valuable
sensitivity to the relevant reaction rates. If we then as-
sume that such microphysical rates are known, we can
gain sensitivity to the Hubble rate. A prime example
is Big Bang Nucleosynthesis (BBN), where sensitivity of
the yield of helium to nuclear reaction rates allows one to
infer, from measurements of YP, the expansion rate dur-
ing BBN, and thus, through the Friedmann equation, the
mass/energy density of the Universe at that time. Sim-
ilarly, hydrogen recombination is an out-of-equilibrium
process which is sensitive to atomic reaction rates, and
thus breaks the symmetry of the Eq. (1) transformation.
We will see that the impact of this symmetry breaking
on our parameter constraints is mild.
A mirror world dark sector and free YP.—We now ar-

gue that by extending the ⇤CDM model to include a
dark copy of the photons, baryons, and neutrinos (see
e.g. Refs. [79–99]), all with the same mean density ra-
tios as in the visible sector, we can e↵ectively mimic the
scaling transformation while evading the constraint from
FIRAS. The dark photons are a replacement for the ad-
ditional visible photons that would violate the FIRAS
constraint. The dark baryons (implemented as “atomic
dark matter” (ADM) [100–123]) allow us to scale up
the total baryon-like density without changing the well-
constrained (visible sector) baryon-to-photon ratio. The
dark neutrinos allow us to scale up the e↵ective number of
free-streaming neutrino species from its ⇤CDM value of
N

fs
e↵ = 3.046, preserving the somewhat well-constrained

ratio of free-streaming to tightly-coupled relativistic par-
ticle densities [124–126].
In our implementation, the new mirror dark sector in-

teracts purely gravitationally with the visible sector and
the CDM (this could be relaxed in a more general model).
Therefore, to mimic a ⇤CDM model with scaled-up den-
sities, the perturbations in the mirror world components
must evolve in the same way as in the visible sector.
For this to be the case the dark photons must transition
from tightly coupled to freely streaming when the visible
photons do. We thus ensure that the ADM recombines
at approximately the same time as regular hydrogen by
keeping the ratio BD/TD fixed, where BD is the binding
energy of the ADM, and by setting the dark fine struc-
ture constant and dark proton mass equal to those in the
light sector. For simplicity we assume there are no dark
versions of helium or heavier nuclei, although if present,
these could constitute some or all of the CDM.
The above choices ensure that the gravitational po-

3

Hubble horizon, the wavelength of fluctuations, and the
photon mean free path. To close this system of equations,
we need the perturbed Einstein equations for the � and  
potentials. We use here the Poisson and shear equations

k
2
�+ 3aH

✓
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2
H

d�

da
+ aH 

◆
= �4⇡Ga

2
X

i

⇢i�i, (5)

k
2(��  ) = 12⇡Ga

2
X

i

(⇢i + Pi)�i,

where �i and �i are the energy density perturbation and
anisotropic stress of species i, respectively. Once again,
these equations are invariant under the transformation
H ! fH (which implies ⇢i ! f

2
⇢i) and k ! fk. Mass-

less neutrinos and dark matter follow collisionless ver-
sions of those given in Eqs. (2), implying that they too
are invariant under the transformation H ! fH and
k ! fk. We note that the evolution of massive neutri-
nos perturbations are also invariant under this transfor-
mation, once their masses are also properly rescaled (see
Appendix TBD).

We thus see that the linear evolution equations of all
components present in the Universe are invariant under
the transformation given in Eq. (4). This means that we
can express the solution �̃ to the perturbation equations
in the presence of a rescaled Hubble rate H ! fH in
terms of the original solution � in the absence of scaling
(i.e. f = 1) as

�̃(k, ̇, a, f) = �(k/f, ̇/f, a, f = 1), (6)

where � here stands for any of the perturbation variables
(e.g. �, v, F�l, etc.). Such a relation was first presented in
Ref. [3] in the context of the tight-coupling approxima-
tion ( ̇� H), but we see here that it applies in a broader
context once the Thomson opacity is also rescaled.

Under this rescaling, the CMB temperature power
spectra then take the form

C
TT
` (f) =

Z
dk

k
P (k)|�̃T `(k, f)|2, (7)

where P (k) is the primordial spectrum of fluctuations,
and �T `(k, f) is the photon transfer function under the
rescaling f ! fH. The latter can be written as

�̃T `(k, f) =

Z 1

0
da S̃T (k, ̇, a, f)j`(k�̃(a, f)), (8)

where S̃T (k, ̇, a, f) is the photon source term, and
�̃(a, f) is the conformal distance to scale factor a in
the presence of the rescaled Hubble rate. The source
term S̃T depends on cosmological perturbations obeying
Eq. (6) and on the photon visibility function g̃(a, f) =
�d/da(e�̃(a,f)), where

̃(a, f) =

Z 1

a
da

0 ne�T

fa0H
=
(a, f = 1)

f
. (9)

This implies that

S̃T (k, ̇, a, f) = ST (k/f, ̇/f, a, f = 1). (10)

Similarly, we have �̃(a, f) = �(a, f = 1)/f . We thus get

�̃T `(k, f) =

Z 1

0
daST (k/f, ̇/f, a, f = 1)

⇥ j`((k/f)�(a, f = 1))

= �T `(k/f, f = 1), (11)

and the CMB temperature spectrum takes the form

C
TT
` (f) =

Z
dk

k
P (k)|�T `(k/f, f = 1)|2

=

Z
dk

0

k0
P (fk0)|�T `(k

0
, f = 1)|2. (12)

Adopting the standard power-law primordial power spec-
trum P (k) = As(k/kp)ns�1, where kp is the pivot scale,
and rescaling the scalar amplitude As ! As/f

ns�1 we
can write this as

C
TT
` (f) =

Z
dk

0

k0
As

fns�1

✓
fk

0

kp

◆ns�1

|�T `(k
0
, f = 1)|2

=

Z
dk

0

k0
As

✓
k
0

kp

◆ns�1

|�T `(k
0
, f = 1)|2

= C
TT
` (f = 1), (13)

hence showing that the CMB temperature spectrum is
indeed exactly invariant under the transformation

�
H ! fH, ̇! f ̇, As ! As/f

ns�1
 
. (14)

An entirely similar argument applies to the polarization
and cross spectra, implying that the primary CMB is
entirely unchanged under this transformation. Further-
more, matter clustering observables (e.g. �8) are also in-
variant under this transformation, hence also leaving the
lensing of the CMB unchanged. We thus conclude that
the observable CMB is completely invariant under the
above transformation.
In the top row of Figure 1, the CMB power spectra are

the same under the exact scaling symmetry. In this case,
the physical energy density of di↵erent species are scaled
up by f

2. Since ne / Xe⌦bh
2(1 � Yp), the scaling sym-

metry brings in a factor of f2 in ne. To keep the ne�Ta

scaled by f , we can either scale Thomson scattering cross
section, �T ! �T /f , or vary the Helium mass fraction,
YP, to keep the “e↵ective Thomson cross section”. The
result is the same as we expected for the scaling symme-
try. In the plot, we show the scaling factor up to f = 1.3,
which corresponds to H0 = 87.57 km/s/Mpc.

III. SOURCES OF SYMMETRY BREAKING

Of course, not all observables are invariant under this
transformation. Further, there are physical processes
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• This really leaves the CMB temp/pol invariant (fixing 
recombination history here)

f

H0 = 67.5, 74.3, 81km/s/Mpc



Reality check: 3 main symmetry 
breaking effects
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Getting around COBE: Mirror World
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• We can’t easily increase the densities of photons/baryons

• So instead add mirror “dark” particles! 

Chacko et al. (2005, a,b,c), Craig & Howe (2014), Craig et al. (2015), Farina (2015), Barbieri et al. 
(2016), Chacko et al. (2017), Csaki et al. (2017), Hochberg et al. (2017), Harigaya et al. (2017), Ibe
et al. (2019), Terning et al. (2019), Curtin & Gryba (2021), Blinov et al. (2021) and many more

Stranger Things



Adjusting the photon scattering rate
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• The mirror world ingredients ensure that we “effectively” 
implement the rescaling 

while leaving the perturbation evolution invariant. 

• It does not however implement the necessary scaling

• Since , one can implement this scaling by 
adjusting the helium fraction according to 

2

important questions raised by our proposed scenario, and
their possible resolutions, before concluding.

The Scaling Transformation.— If we assume, for now,
that recombination happens in equilibrium and neutri-
nos are massless then the only length scales in the linear
perturbation evolution equations in the ⇤CDM model,
written with the scale factor a = 1/(1 + z) as the in-
dependent time-like variable, are the gravitational time
scales of each of the i = 1 to N components, 1/

p
G⇢i(a),

and the photon mean free path between electron scatters,
1/(�Tne(a)). As a result, if we consider the linear evo-
lution of a single Fourier mode with wavenumber k, any
fractional perturbation, such as �⇢m(k, a)/⇢m(a) satisfy-
ing the evolution equations will also satisfy them when
transformed by a uniform scaling of all relevant (inverse)
length scales (including k) by a factor we will call f .
Since the initial conditions in ⇤CDM do not introduce
a length scale (the spectrum of initial perturbations is a
power law with an amplitude to be determined from ob-
servations), the statistical properties of fractional pertur-
bations viewed in projection are independent of f except
for an overall amplitude. Dependence on the amplitude
can be removed [40] by extending the scaling transforma-
tion to include As ! As/f

(ns�1) where As is the ampli-
tude of the primordial power spectrum at some fiducial
value of k, and ns is the spectral index of the power law
power spectrum of initial density perturbations.

In Ref. [40] this transformation was introduced but
without the photon scattering-rate scaling. Including it,
the transformation leads to an exact symmetry, in the
limit of equilibrium recombination [73], massless neutri-
nos [74], and linearized equations [75], of the statisti-
cal properties of maps made in projection on the sky
of quantities such as �⇢/⇢, and fractional CMB tem-
perature and polarization anisotropies. These include
galaxy clustering power spectra, shear power spectra,
galaxy-shear cross correlations, fractional CMB temper-
ature power spectra, polarization power spectra, and the
temperature-polarization cross spectrum. The invariance
exists for the ⇤CDM model, and any other model as long
as additional length scales (if any, such as related to mean
curvature or neutrino mass) are properly scaled as well.
Absent the introduction of new length scales, the full
transformation can be written as

p
G⇢i(a) ! f

p
G⇢i(a), �Tne(a) ! f�Tne(a)

and As ! As/f
(ns�1)

.

(1)

Symmetry Breaking.—In the real universe, the trans-
formation given in Eq. (1) immediately runs into severe
problems with observations that are sensitive to absolute
densities of cosmological components. Most importantly,
we know very precisely the mean energy density of the
CMB today from measurements of its flux density across
a broad range of wavelengths. It is famously nature’s
best approximation to black body radiation, with a mea-
sured temperature from FIRAS of T0 = 2.7255 ± 0.0013

K [76, 77]. By anchoring ⇢� , this measurement severely
limits our ability to exploit the scaling transformation to
raise H0. A similar point was made recently in Ref. [78].
Other important e↵ects that break the above symme-

try arise from departures from thermodynamic equilib-
rium, as emphasized in Ref. [40]. Unlike periods of equi-
librium, during which we have no sensitivity to the rates
of the reactions that are maintaining equilibrium, peri-
ods in which equilibrium is lost provide us with valuable
sensitivity to the relevant reaction rates. If we then as-
sume that such microphysical rates are known, we can
gain sensitivity to the Hubble rate. A prime example
is Big Bang Nucleosynthesis (BBN), where sensitivity of
the yield of helium to nuclear reaction rates allows one to
infer, from measurements of YP, the expansion rate dur-
ing BBN, and thus, through the Friedmann equation, the
mass/energy density of the Universe at that time. Sim-
ilarly, hydrogen recombination is an out-of-equilibrium
process which is sensitive to atomic reaction rates, and
thus breaks the symmetry of the Eq. (1) transformation.
We will see that the impact of this symmetry breaking
on our parameter constraints is mild.
A mirror world dark sector and free YP.—We now ar-

gue that by extending the ⇤CDM model to include a
dark copy of the photons, baryons, and neutrinos (see
e.g. Refs. [79–99]), all with the same mean density ra-
tios as in the visible sector, we can e↵ectively mimic the
scaling transformation while evading the constraint from
FIRAS. The dark photons are a replacement for the ad-
ditional visible photons that would violate the FIRAS
constraint. The dark baryons (implemented as “atomic
dark matter” (ADM) [100–123]) allow us to scale up
the total baryon-like density without changing the well-
constrained (visible sector) baryon-to-photon ratio. The
dark neutrinos allow us to scale up the e↵ective number of
free-streaming neutrino species from its ⇤CDM value of
N

fs
e↵ = 3.046, preserving the somewhat well-constrained

ratio of free-streaming to tightly-coupled relativistic par-
ticle densities [124–126].
In our implementation, the new mirror dark sector in-

teracts purely gravitationally with the visible sector and
the CDM (this could be relaxed in a more general model).
Therefore, to mimic a ⇤CDM model with scaled-up den-
sities, the perturbations in the mirror world components
must evolve in the same way as in the visible sector.
For this to be the case the dark photons must transition
from tightly coupled to freely streaming when the visible
photons do. We thus ensure that the ADM recombines
at approximately the same time as regular hydrogen by
keeping the ratio BD/TD fixed, where BD is the binding
energy of the ADM, and by setting the dark fine struc-
ture constant and dark proton mass equal to those in the
light sector. For simplicity we assume there are no dark
versions of helium or heavier nuclei, although if present,
these could constitute some or all of the CDM.
The above choices ensure that the gravitational po-

H ! fH

2

important questions raised by our proposed scenario, and
their possible resolutions, before concluding.

The Scaling Transformation.— If we assume, for now,
that recombination happens in equilibrium and neutri-
nos are massless then the only length scales in the linear
perturbation evolution equations in the ⇤CDM model,
written with the scale factor a = 1/(1 + z) as the in-
dependent time-like variable, are the gravitational time
scales of each of the i = 1 to N components, 1/

p
G⇢i(a),

and the photon mean free path between electron scatters,
1/(�Tne(a)). As a result, if we consider the linear evo-
lution of a single Fourier mode with wavenumber k, any
fractional perturbation, such as �⇢m(k, a)/⇢m(a) satisfy-
ing the evolution equations will also satisfy them when
transformed by a uniform scaling of all relevant (inverse)
length scales (including k) by a factor we will call f .
Since the initial conditions in ⇤CDM do not introduce
a length scale (the spectrum of initial perturbations is a
power law with an amplitude to be determined from ob-
servations), the statistical properties of fractional pertur-
bations viewed in projection are independent of f except
for an overall amplitude. Dependence on the amplitude
can be removed [40] by extending the scaling transforma-
tion to include As ! As/f

(ns�1) where As is the ampli-
tude of the primordial power spectrum at some fiducial
value of k, and ns is the spectral index of the power law
power spectrum of initial density perturbations.

In Ref. [40] this transformation was introduced but
without the photon scattering-rate scaling. Including it,
the transformation leads to an exact symmetry, in the
limit of equilibrium recombination [73], massless neutri-
nos [74], and linearized equations [75], of the statisti-
cal properties of maps made in projection on the sky
of quantities such as �⇢/⇢, and fractional CMB tem-
perature and polarization anisotropies. These include
galaxy clustering power spectra, shear power spectra,
galaxy-shear cross correlations, fractional CMB temper-
ature power spectra, polarization power spectra, and the
temperature-polarization cross spectrum. The invariance
exists for the ⇤CDM model, and any other model as long
as additional length scales (if any, such as related to mean
curvature or neutrino mass) are properly scaled as well.
Absent the introduction of new length scales, the full
transformation can be written as

p
G⇢i(a) ! f

p
G⇢i(a), �Tne(a) ! f�Tne(a)

and As ! As/f
(ns�1)

.

(1)

Symmetry Breaking.—In the real universe, the trans-
formation given in Eq. (1) immediately runs into severe
problems with observations that are sensitive to absolute
densities of cosmological components. Most importantly,
we know very precisely the mean energy density of the
CMB today from measurements of its flux density across
a broad range of wavelengths. It is famously nature’s
best approximation to black body radiation, with a mea-
sured temperature from FIRAS of T0 = 2.7255 ± 0.0013

K [76, 77]. By anchoring ⇢� , this measurement severely
limits our ability to exploit the scaling transformation to
raise H0. A similar point was made recently in Ref. [78].
Other important e↵ects that break the above symme-

try arise from departures from thermodynamic equilib-
rium, as emphasized in Ref. [40]. Unlike periods of equi-
librium, during which we have no sensitivity to the rates
of the reactions that are maintaining equilibrium, peri-
ods in which equilibrium is lost provide us with valuable
sensitivity to the relevant reaction rates. If we then as-
sume that such microphysical rates are known, we can
gain sensitivity to the Hubble rate. A prime example
is Big Bang Nucleosynthesis (BBN), where sensitivity of
the yield of helium to nuclear reaction rates allows one to
infer, from measurements of YP, the expansion rate dur-
ing BBN, and thus, through the Friedmann equation, the
mass/energy density of the Universe at that time. Sim-
ilarly, hydrogen recombination is an out-of-equilibrium
process which is sensitive to atomic reaction rates, and
thus breaks the symmetry of the Eq. (1) transformation.
We will see that the impact of this symmetry breaking
on our parameter constraints is mild.
A mirror world dark sector and free YP.—We now ar-

gue that by extending the ⇤CDM model to include a
dark copy of the photons, baryons, and neutrinos (see
e.g. Refs. [79–99]), all with the same mean density ra-
tios as in the visible sector, we can e↵ectively mimic the
scaling transformation while evading the constraint from
FIRAS. The dark photons are a replacement for the ad-
ditional visible photons that would violate the FIRAS
constraint. The dark baryons (implemented as “atomic
dark matter” (ADM) [100–123]) allow us to scale up
the total baryon-like density without changing the well-
constrained (visible sector) baryon-to-photon ratio. The
dark neutrinos allow us to scale up the e↵ective number of
free-streaming neutrino species from its ⇤CDM value of
N

fs
e↵ = 3.046, preserving the somewhat well-constrained

ratio of free-streaming to tightly-coupled relativistic par-
ticle densities [124–126].
In our implementation, the new mirror dark sector in-

teracts purely gravitationally with the visible sector and
the CDM (this could be relaxed in a more general model).
Therefore, to mimic a ⇤CDM model with scaled-up den-
sities, the perturbations in the mirror world components
must evolve in the same way as in the visible sector.
For this to be the case the dark photons must transition
from tightly coupled to freely streaming when the visible
photons do. We thus ensure that the ADM recombines
at approximately the same time as regular hydrogen by
keeping the ratio BD/TD fixed, where BD is the binding
energy of the ADM, and by setting the dark fine struc-
ture constant and dark proton mass equal to those in the
light sector. For simplicity we assume there are no dark
versions of helium or heavier nuclei, although if present,
these could constitute some or all of the CDM.
The above choices ensure that the gravitational po-
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Label Data Set

1 Planck TT, TE, EE, lensing + BAO

2 Data Set 1 plus R21 (H0 = 73.2± 1.3 km/s/Mpc)

TABLE I. Definition of data sets 1 and 2. We use the Plik
TT+TE+EE, LowlT, LowlE, and lensing Planck likelihoods
described in Ref. [109]. BAO data sets are 6dFGS [110], SDSS
MGS [111] and BOSS DR12 [112].

Label Model Space

A ⇤CDM + f (scaling enforced), xe(z) fixed

B ⇤CDM + f (scaling enforced), xe(z) calculated

C ⇤CDM + TD + N
fs
e↵ + fADM + YP

TABLE II. Definition of model spaces A, B & C. For model
space A the one non-⇤CDM parameter is f . We restrict the
additional components, including YP, to the scaling solution
and (artificially) hold xe(z) fixed to its ⇤CDM best-fit value,
for both the dark and light sectors. We scale YP from its
BBN-consistent ⇤CDM data set 1 best-fit value of 0.2454.
Model space B di↵ers only in that we calculate the light sec-
tor xe(z) using the atomic reaction rates (and the code Rec-
Fast [113, 114]) and the dark sector xe(z) as in [93]. Model
space C only di↵ers from B in that we allow YP, the e↵ective
number of free-streaming neutrinos N

fs
e↵ , and the fraction of

mirror world (or “atomic”) dark matter fADM to depart from
their scaling values. For all model spaces we adopt the uni-
form prior 1.00001 < f < 1.3, set the ratio of dark to light

photon temperatures to TD/T� =
�
f
2 � 1

�1/4
and, although

it introduces a new length scale, we take one of the neutrino
species to have a mass of 0.06 eV, for better consistency with
atmospheric and solar neutrino oscillation observations.

tentials are unchanged compared to ⇤CDM, even in the
presence of extra mass/energy components. We can keep
the Thomson scattering rate near the scaling trajectory
by adjusting the primordial fraction of baryonic mass in
helium, YP. At fixed baryon density we have ne(z) /
xe(z)(1�YP) where xe(z) is the fraction of free electrons.
So to scale the scattering rate appropriately, approximat-
ing xe(z) as fixed, we send (1� YP) ! f(1� YP).

Results.—We now explore parameter constraints in the
framework just described. We define data sets 1 and 2
and model spaces A, B, and C, in Tables I and II. In Fig. 1
we see the expected results from A1: the strong degener-
acy of f with H0, and the posterior on H0 entirely deter-
mined by the prior on f . This is the numerical manifesta-
tion of the exact symmetry we have presented, only very
softly broken by non-zero neutrino mass. Of more inter-
est are the results from B1, where we no longer artificially
hold xe(z) fixed. We find that the symmetry-breaking ef-
fects of non-equilibrium recombination are quite soft, as
the posterior on f does not become severely restricted.
The tension with R21 has been completely eliminated.

The final set of curves in Fig. 1 is for B2. We find that
f = 1.08 ± 0.02, as expected since the R21 H0 is about
8% higher than the ⇤CDM prediction given CMB data.

FIG. 1. Parameter constraints from data sets 1 and 2 given
models A and B (see Tables I and II). Top panels: the (unnor-
malized) posterior probability densities of H0 and f . Bottom
two panels: the 68% and 95% contours of equal probability
density in the H0�f and YP�f planes. The grey band ‘R21’
shows the 1 and 2 � constraint on H0 from R21. The purple
band ‘A21’ shows the same for YP from [115, hereafter A21].

In Fig. 2 we show how well departures away from scal-
ing are constrained by the data, if they are not prevented
by fiat. The B1 contours lie over the constraints given
model C; as expected, the scaling direction is preferred
by the data. We also see that the region of high posterior
probability density extends to parameter values far from
the scaling solution, an indication of some freedom that
more detailed model building could exploit. For C2, we
find that fADM = 0.027±0.011 and TD = (0.68±0.06)T� .
Meanwhile, the value of �8 = 0.808 ± 0.011 is nearly
unchanged (if slightly lower) from its ⇤CDM value, as
expected from the symmetry.
In Figs. 1 and 2 we also see a problem: the YP values

consistent with R21 are inconsistent with inferences from
spectral observations of hot “metal-poor” gas such as the
A21 finding of YP = 0.2453 ± 0.0034. From C2 we have
YP = 0.170 ± 0.025, a 3.0 � di↵erence with A21. Com-
pounding this trouble is that the additional light relics, if
we do not otherwise alter the standard thermal history,
increase the BBN-expected YP, in C2, to 0.252± 0.004.
Discussion.—Our work is helpful for understanding

the failure of other cosmological models to to com-
pletely relieve the H0 tension. Instead of considering
all changes that some extension of ⇤CDM makes from
the best-fit ⇤CDM cosmology, one can compare to a

Not unique! There are 
other ways to implement 

this scaling.



• The symmetry allows us to 
completely eliminate the 
Hubble tension between 
CMB + BAO and the local 
distance ladder (R21 here).

Second Test: Compatibility with the 
cepheid-calibrated distance ladder 
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Mirror Sector Freedom
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However, YP
is low! 

At face value, the direct Hubble 
measurements predict ~3% in 
atomic dark matter, and a dark 

photon bath with a neutrino-like 
temperature.  



Open Questions
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• Can we achieve a higher photon scattering rate and have 
consistency with BBN and YP ?

• Can we detect the 3% of atomic DM?

• Can a consistent mirror sector be built?

• Impact of nonlinear evolution?


